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LE’ITER TO THE EDITOR 

A q-tensorial approach to q-oscillators in UJsu(2)) 

D Vrinceanu, M Stroila and A Ludu 
Department of Theoretical Physics, University of Bucharest, Bucharest, PO Box MG 5211, 
Romania 

Received 30 June 1992 

Abstract. In this letter we construct a q-tensorial structure far q-oscillators. Following an 
appropriate algebraic formalism we succeeded in constructing classes of tensorial operators 
and consequently the Casipir element of UJd?)), as a 0-rank tensorial operator. The 
classic Casimir operator of SU(2) is obtained in the limit q ~ + L  

As was shown in [l] quantum systems admit as internal symmetries more general 
structures then groups. The quasitriangular Hopf algebras, introduced by Drinfeld [2], 
represent the appropriate mathematical tools for describing such symmetries. 

A particular category of quasitriangular Hopf algebras is supplied by the deforma- 
tions of the universal enveloping algebra of semisimple Lie algebras [2,3]. For quantum 
systems which are approximately described by Lie algebras it is natural to seek as 
exact symmetry a deformation of these. A good example of this technique is supplied 
by the IBM method. 

Analogous to the classical case where the generators of the Lie algebras are built 
up with quantum oscillators, it can be proved that the Hopf algebras U,(su(n)) (the 
deformation of the universal enveloping algebra U ( s u ( n ) ) )  can be realized with 
q-oscillators (e.g. UJsu(2) )   in [4,5]). Probably any deformation of the universal 
enveloping algebra of a semisimple Lie algebra can be obtained in this way. 

The creation and annihilation operators of quantum oscillators can be endowed 
with a spherical tensor structure [SI. In this letter we prove that the creation and 
annihilation operators of q-oscillators can be endowed with a tensor structure UJsu(2))  
(in the sense used in [l]). The philosophical reason for this approach is the fact that 
any observable of a quantum system must have tensorial properties with respect to 
the symmetry of the system. One remarks that in all tackled stages, in the limit q + 1, 
one must obtain classical quantum symmetry. 

Quantum symmetry requires: 
(i) a Hopf algebra A (see Abe [ 6 ] ) ;  
(ii) a unitary representation of A on the Hilbert space of states; 
(iii) the ground state (the vacuum state) has the transformation law 

for g E A (unit representation). LT(g)lO) = E k ) I O )  

(iv) The states belonging to the Hilbert space are created by successive application 
of some q-tensorial operators on the ground state. 
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One defines q-tensorial (briefly tensorial) covariant operators as operators defined 
on the Hilbert space which satisfy the transformation law: 

U(g)tm =c 1 D",(g:)t"U(g;) 
F "  

where D is a matrix representation of A and 

A(g) =C g:@g:. 
P 

The rank of the q-tensor operator 1 is the rank of its matrix representation D. 
However, it is possible to relax some of these conditions [ 11. 
The precise Hopf algebra in which we are strongly interested is U,(su(2)). This is 

an associative algebra with generators J+, J-, qiHI2, 1, defined by the relations: 
H I 2  - H / 2 -  - H I 2  H / 2 =  1 

[I+, J-I = [HI 4 4  - 4  4 
q H / 2 ~  - H / 2 =  * *4  4 J*. 

It is easy to see that Uq(su(2)) is a Hopf algebra with: 
(i) the coproduct 

A(J,) = J,@q"12+q-H12@Ji 
L ( ~ * H / ~ )  = q * H / 2 @ q * H / Z  

(ii) the co-unit 

&(J*) =o & ( 4 * H / 2 )  = 1 

(iii) the antipode 
S(J*) = -q"J* s ( ~ * H / ~ ) =  q*H12 

Its finite-dimensional irreducible representations are given by integer or by half-integer 
number 1. If the representation D' corresponds to the integer I then the carrier space 
V, of D' has the orthonormal basis e,,,, m = -1, - I+  1,. . . , I ,  such that: 

U(J,)e,,, = ( [ / ~ m ] [ l *  m + 1])112em11 He,,, = me,,, 

with [n] given by: 

The representations D' of V,(su(Z)) are deformation of the corresponding representa- 
tions of the classical Lie algebra 4 2 ) .  Finite-dimensional representations of U,(su(2)) 
are completely reducible. 

As in the classical case we have the expansion: 

I In) = 1 (jmkm'l 1 4  jm)OI km? 
m+m'=" 

which defines q-Clebsch-Gordan coefficients of the tensor product D'BDk, see [7]. 
We can also prove, as in the classical case: 



Letter to the Editor L63 1 

Proposition 1. The tensorial product of tensorial operators is a tensorial operator. 

Proof: Let t ,  be a covariant tensor operator of rank j and t k ,  a covariant tensor 
operator of rank k Then the tensorial product of these two tensorial operators is: 

T, =(t@t')f,  = (jmkm'lln)t,tk, 

where the rank I runs in the same range as in the classical case. 

m+"=" 

We have: ~. 

U(g)T.  = C (j,km'lW 1 C D ~ ( g : ) D ~ , , ( g ~ ) t , t : U ( g ~ ) .  
In+,'=" P.9 7.3, 

If we use the co-associativity property, i.e. 

(A@id)A= (idOA)A 
we obtain 

U(g)T. = c Cimkm'IIn) C C D ' , ( g ~ ~ ) D : m . ( g ~ ) t , t : U ( g ~ )  ' , 
m+m=n '.S P.9 

= c c D~.(g~)(jrksIIO)t,t:U(g~) 
7.5 P 

=C Dh.(g;)TnU(g:). 
P 

Thus T. is a tensorial operator of rank 1. U 

Proposition 2. Any scalar tensorial operator is an invariant operator. 

Proof: If C is a scalar operator, that is C is a 0-rank tensor operator, then it satisfies 
the transformation law given by: 

W g ) C  = C  Do(g:)CWg:) 
P 

The 0-rank representation is the representation which transforms ground state, that is 
E. Then 

e Dnk:)CU(g:)  =e & ( g : ) c u ( g ; ) =  .U(; &X). 
P 

Next, using the co-unit property, i.e. (s@id)A=id, we obtain: 

W g ) C  = C W g ) .  U 

Proposition 3. If T, is a I-rank tensorial operator then the states T,IO) are basic states 
of the rank I representation. 

The proof is obvious. 

Let us consider an operator b and its adjoint b', which acts on the Hilbert space, 
with a base In), n =0, 1, 2, .  . . , like: 

b10) = 0 bin)= ( [ n ] ) " l n  -1) and b:ln)= ( [ n +  l])"*/n+l). 

The operator N is defined by Nln) = nln). 
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With these definitions we have the following relations: 

bb+= [ N +  11 b+b = [ N I  [ N, b+] = b+ [N,  b]=-b 
' qPNbq-rN = q-'b qrNb+q-rN = q,bf 

for any real r, and the q-bosonic commutation relation 

bb+- qb+b = q-N or bb + - q-'bib = q N. 

Following [4] we construct the generators of Uq(su(2)) with two independent q- 
oscillators: 

J+=b:b2 J- = b:b, H = N I  - N2. 

Consequently Hopf algebra U,(su(n)) can be obtained with n independent q-oscil- 
lators. 

We now consider tensorial operators constructed with q-oscillators. 
We know that 2j+ 1 independent quantum oscillator operators can be endowed 

with spherical tensor structure in the following procedure [8,9]: 

6? Jm =b? Jm and 6. Jm = (-1)'"b. I.-m 

In the following we show how the pair of q-oscillators which generate the Hopf algebra 
U,(su(Z)) can be endowed, also, with q-tensor structure. 

Thus, we consider two bosonic states (with the quantum number of the angular 
momentum $).characterized by the operators b and b+ with index 1 when we refer to 
$ states, and with index 2 when we refer to 4 states. A direct verification shows us 
that not only must b be altered but b+ also. 

(m = -j, -j+ 1,. . . , j). 

Finally we found the next tensor operators: 

bl - = q(N~+1)/2b 2 g2= -q-(N2+1)/2b 1' 

Observations: 
(1) The most general form for these operators is: 

6+- 1 - 4  -N:/2b+ 1 6T=qNlb:  

6,=qaqNlb, g2= -q@q-NdZb, 

with a -0 = 1 .  We choose the (*) form (a. =f ,  0 = -4) for symmetry reasons. 
(2) When q + 1 one turns to the classical situation. Using proposition 1 we construct 

the tensor operators of rank 0 and 1, bilinear in the elementary operators b. The scalar 
operator N is defined: 

N =  (6+@6),"=2 (imtm'loo)6$mm., 
We obtain 

N =  -[N]/([2]) ' / '  where N = N I +  N2.  

So, using proposition 2, it results that N is an invariant operator. The 1-rank tensor 
operators T are given by: 

T"=(~+@6)):,=~(im~m'lln)~~~m.. 
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Then we have: 

T+ = TI = qH12J+ 

T- = T-, -qHI2J_ 

T,=([2])-'/2(q"+'[N2J-q--(N~+l) [Nil). 
These operators allow us to build up the invariant operator % (quadratic in elementary 
operators b-two body interactions). 

~~ ~. . .  
%=(TO T)"=C (lmtm'[OO)T,T,.. 

Then 9 shows: 

% = ([3])-"2(qT+T-+ q-'T-T+ - Ti). 

To find eigenvalues of this new q-Casimir, we put % in the form: 

If one acts with '% on the maximal weight state 13) one obtains eigenvalues for fixed N :  

We notice that in the above expression the quantum numbers N and j are mixed. In 
the limit q +  1 this mixing falls and the eigenvalues are the well known j ( j + l )  (up to 
a factor). 

In conclusion we presented a q-tensorial structure of q-oscillators. This was sug- 
gested by the IBM method [lo]. The q-tensor structure of q-oscillators leads to a 
realization of q-tensorial operators. Finally we pointed out some new directions. Further 
on one can try to endow directly the operators bf , ,  b,, (for I > + )  with a tensorial 
structure. This would help to construct a whole deformation of the chains of subalgebras 
used in the IBM method [ll]. On the other hand we suggest working with a new tensor 
creation operator: 

CL = (6+@. . .o 6+)!,,. 
Thus there appears the possibility of building up the subalgebra chains and their 
invariants in terms of such operators. 

With regard to the (*) relations, for I q1= 1, the deformation factors can be interpreted 
as phase factors. At the same time, in this condition one defines the contragradient 
representation with the antipode S and contravariant operators. From these observa- 
tions we suppose that 141 = 1 is the adequate deformation. 
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